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Wave-vortex dynamics in rotating shallow water 
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We investigate how two-dimensional turbulence is modified when the incom- 
pressibility constraint is removed, by numerically integrating the full Saint-Venant 
(shallow-water) equations. I n  the case of small geopotential fluctuations considered 
here, we find no energy exchange between the inertio-gravitational and the 
potentio-vortical components of the flow. A t  small scales, the potentio-vortical 
component behaves as if the flow were incompressible, while we observe an intense 
direct energy cascade within the inertio-gravitational component. At large scales, 
the reverse potentio-vortical energy cascade is reduced when the level of 
inertio-gravitational energy is high. Looking at the effect of rotation, we find that 
a fast rotation rate tends to inhibit all three cascades. I n  particular, the inhibition 
of the inertio-gravitational energy cascade towards small scales implies that  the 
geostrophic adjustment process is hindered by an increase of rotation. Concerning 
the structure of the coherent vortices emerging out of these decaying turbulent flows, 
we observe that the smallest scales are concentrated inside the vortex cores and not 
on their periphery. 

1. Introduction 
Two-dimensional turbulence has been intensively studied in the last 20 years. 

Initially considered as a somewhat academic topic, it has gradually evolved from 
theory, based on dimensional analysis (Kraichnan 1967 ; Leith 1968 ; Batchelor 
1969), to verifiable modelling of real flows, observed in the atmosphere and ocean 
(Morel & Larchevhque 1974; Desbois 1975; Boer & Shepherd 1983), or produced in 
the laboratory (Hopfinger 1983; Sommeria 1986; Couder 1984). In  fact, the 
development of numerical simulation using vector computers has allowed a detailed 
exploration, realistic and systematic, that  self-similarity theory alone, even 
supported by more sophisticated models of statistical closure, could not offer 
(Basdevant et ul. 1981; Babiano et ul. 1984; MeWilliams 1984). A more general 
concept, better suited to stratified geophysical fluids, was also developed and studied 
under the topic of baroclinic quasi-geostrophic turbulence (Charney 197 1 ; Rhines 
1979; Salmon 1978; Hoyer & Sadourny 1982; Sadourny 1985). 

These theories and models have proved their relevance to the description of the 
dynamics of large-scale atmospheric or oceanographic flows far from the equator, i.e. 
under conditions where the quasi-geostrophic hypothesis (weak horizontal divergence 
and dominance of rotational eddies over inertio-gravitational waves) is actually 
verified. However, we may emphasize that the mechanisms generating quasi- 
geostrophy are not always clearly understood, even in the simple barotropic case of 
shallow-water equations. In  the theories of Cahn (1945) and Obukhov (1949), i t  is the 
dispersion of inertio-gravity waves over an infinite domain which allows the 
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potentio-vortical modes, left behind, to dominate ; but this linear argument, 
reasonable for a flow having initially a limited extension on the infinite plane, does 
not apply for a finite or periodic domain like the sphere. Sadourny (1975) has 
proposed a nonlinear mechanism, where inertio-gravitational energy would be 
removed by cascading towards small scales, giving way to the prevalence of 
rotational eddies which, instead, remain trapped within the larger scales. 

The trend towards a quasi-geostrophic attractor of solutions of the Saint-Venant 
equations driven by constant forcing and dissipation (Lorenz 1980) is also a clear 
indication of the nonlinearity of the geostrophic adjustment process. The central 
problem of nonlinear interactions between geostrophic (or potentio-vortical) modes 
and ageostrophic (or inertio-gravitational) modes has been addressed by Sadourny 
(1975) and Warn (1986) for the Saint-Venant equations, while Errico (1981, 1984) 
has investigated similar questions for a two-layer model. Our purpose here is to study 
the nonlinear behaviour of inertiwgravitational waves and their influence on the 
geostrophic dynamics, under various magnitudes of the rotation rate. 

2. Basic formulations and definitions 
We consider shallow-water motion of mean depth H over a doubly periodic plane 

rotating with uniform angular velocity a. Taking the Coriolis parameterf-l = (2L4-l 
as unit time and the radius of deformation (gH)i / f  as unit length, g being the 
acceleration due to gravity, we write the adimensional form of the Saint-Venant 
(shallow-water) equations as 

I F + ( l + N . ( V x  V ) ) N x  V+V($+$P)  = 0 ,  
at 

3 + V . { ( 1 + $ )  at v> = 0, 

in the absence of sources and dissipation. I n  (1) N refers to the vertical unit vector 
oriented upwards, V to the horizontal velocity measured with the unit (gH);,  and $ 
to  the relative fluctuations of the free-surface geopotential around its mean value of 
unity. Shallow-water flow can be termed 'divergent ', or 'compressible two- 
dimensional ', because the surface height acts as a variable two-dimensional density 
producing divergent motions and a combination of inertial and gravity waves. It has 
a formal analogy with barotropic three-dimensional compressible flow under the 
condition y = c p / c ,  = 2 (Riabouchinsky 1932). Following this formal analogy, we 
shall hereafter call ( I I l ) / ( g H ) i  (where the angle brackets means averaged on the 
plane) the Mach number of the shallow-water flow. Its dynamics is then sensitive to 
a constant Coriolis force for scales larger than the Rossby deformation radius, which 
is not the case for non-divergent two-dimensional flows. In  the absence of dissipation, 
total energy, defined as the sum of potential plus kinetic energy, 

is an integral invariant of the motion. Also in the absence of dissipation, potential 
vorticity, defined as 

q =  ( 1 + N . ( V x  V)/(l+$)> (3) 
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is a Lagrangian invariant, associated with an infinite number of integral invariants, 
amongst which is potential enstrophy 

S = i[/q2(l+q5)dxdy. 2 (4) 

The linearized equations for small perturbations around a resting state with free- 
surface height H are readily obtained from (1) : 

E + N . ( V x  at V ) + V $ = O ,  % + V . V = O ,  at ( 5 )  

v+x = 0, ---++4 at = 0, Z+vzx = 0. 

or, in terms of stream function $ = V ( N -  (V x V)) and velocity potential x = 

(6) 

These linearized equations (5 ) ,  (6) have quadratic invariants corresponding to the 
non-quadratic invariants, energy (2) and potential enstrophy (4), of the nonlinear 
case (1). The perturbation energy is 

v-Z(V * v) : 

at 

and the perturbation potential enstrophy is 

with qf = N.(V x q - 4  = V2+-$ (9) 

being the linearized potential vorticity of the perturbation. Owing to the existence 
of the quadratic invariant E ,  equations ( 5 ) ,  (6) have a complete set of eigenmodes, 
clearly divided into two classes: (i) the potentio-vortical mode (denoted by the 
subscript V), which is non-divergent (xv = 0), geostrophic = $"), stationary (the 
associated eigenfrequencies vanish, wv = 0) and which contains all the linearized 
potential vorticity of the flow (qk = q') ; (ii) the two inertio-gravitational modes 
(denoted by the subscript G )  also called Poincar6 waves, which are divergent (xG = 
x), characterized by their high frequencies ( w t  = 1 + k2, k being the magnitude of 
the wavevector) and for which the linearized potential vorticity vanishes (qb = 0 or 
k2$, = -q5,). In the limit of no rotation these inertio-gravity modes propagate 
with the critical velocity (gH): ( = 1 in our adimensional formulation). This critical 
velocity is the equivalent of the sound velocity for our problem, following the 
analogy already stated with three-dimensional barotropic flow (Riabouchinsky 
1932). In the presence of rotation, inertio-gravity modes become dispersive. 

This decomposition into orthogonal eigenmodes is analogous, in the limit f+ 0, to 
the factorization used to describe compressible (Moyal 1952 ; Feiereisen, Reynolds & 
Ferziger 1981) or axisymmetric (Craya 1958 ; Herring 1974) turbulence, where the 
velocity field in Fourier space is decomposed into a solenoidal (dilatation-free) vector 
and a dilatation vector, respectively perpendicular and parallel to the wave vector. 
An equivalent decomposition into potential vorticity and internal wave modes has 
been proposed to analyse stratified flows (Riley, Metcalfe & Weissman 1981 ; Lilly 
1983; Miiller, Lien & Williams 1988). Note that the slow-manifold characteristic of 
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balanced states, introduced by Leith (1980) and Lorenz (1980, 1986), is an extension 
to the nonlinear case of the subspace of potentievortical modes. 

Energy (2) and potential enstrophy (4) are strict invariants of the nonlinear 
equations ( 1 ) ;  but, being non-quadratic, they cannot be split unequivocally into the 
various scales, as is usually done in the incompressiblet case using Fourier series. On 
the other hand, spectral expansions can be computed using the eigenmodes of the 
linearized equations, from which spectral distributions of E and S' can be obtained ; 
but E and S' are approximate invariants of the nonlinear equations only in the 
small-perturbation quasi-incompressible limit. On the basis of these eigenmodes, we 
define a one-dimensional potentio-vortical energy spectrum 

and a one-dimensional inertio-gravitational energy spectrum 

which appears as the sum of divergent energy plus ageostrophic energy. The 
corresponding potential enstrophy spectra read 

Sb(kn) = 0. (13) 

The global linearized invariants, expressed as 

are, to first order, equivalent to E and S in the weak perturbation limit. 

nonlinear system 
Note that the quadratic forms E and S' are, in fact, exact invariants of the 

I a 
- at v2x + J(x, V2$) + vyg5 - $) = 0, 

which is intermediate between (1) and (5)  ; it  is obtained by rewriting (1) in terms of 
$, x and $, then dropping all nonlinear terms that are not in Jacobian form. A 
variant of (15), which also exactly conserves E and S', can be obtained by dropping 

t In the present context the word 'incompressible' means that the two-dimensional density (or 
free-surface height) of a fluid parcel is conserved within the two-dimensional fluid motion. The 
classical theory of two-dimensional turbulence deals with incompressible two-dimensional flow, in 
this sense. 
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J ( x ,  V2$) in the divergence equation, which reduces then to  its linear part. From (15), 
or its variant, we get 

which, in the quasi-geostrophic case (q5 - $ = 0 ) ,  yields the barotropic non-divergent 
potential vorticity equation 

a 
- (V'- l )$+J($ ,V2$)  at = 0. 

Thus (15), or its variant, also appears as an intermediate form between the full Saint- 
Venant equations and their quasi-geostrophic approximation (17). 

I n  the quasi-geostrophic case, the one-dimensional distribution of total energy 
reads 

1 
E ( k , )  = - C (1+k2)l$(k)12 = C B"(k). (18) 

knGlkl<kn+i k n W < k n + i  

The one-dimensional distributions of potential enstrophy S ,  kinetic energy K" and 
kinetic enstrophy Z" are entirely determined by the modal distribution of total 
energy &'(k) : 

sN(kn) = C (1+k2)&"(k),  (19) 
knGlkl<kn+i 

Z"(kn) = - k4 &"(k). 
kn GIkl <fin+, 1 + k 2  

Note that relation (19) is also valid for the potentio-vortical modes of the full Saint- 
Venant equations : 

Sv(k,) = E ( 1  + k2) &;(k) (22) 
knGlklCtn+i 

with 

3. The quasi-geostrophic case 
We first look a t  the effect of rotation on quasi-geostrophic dynamics. The basic 

spectral relations are (18)-(21) ; the classical relations of two-dimensional turbulence 
are recovered when k %- 1 (scales smaller than the radius of deformation) ; the spectral 
range k < 1 corresponds to the range of scales where the flow is sensitive to rotation. 
For simplicity we consider the case of a stationary turbulent flow in an infinite 
rotating plane, forced a t  k = k, and dissipated a t  k = k, B k,. We denote by I,, I ,  
the energy and potential enstrophy injection rates, and by D,, D,  the corresponding 
dissipation rates. From (19), 

I ,=( l+k;)I , ,  D,=  (l+kL)D,. (23) 

For stationary turbulence we have Ds < I ,  and therefore, D ,  + 0 as k, + 00 : as in 
usual two-dimensional turbulence, energy is not dissipated at  infinite Reynolds 
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numbers. Denoting now by LE, L, the rates of total energy and potential enstrophy 
reaching a given large scale range k < k, < k,, we get, again from (19), 

LE<L,Q(1+kE)LE. (24) 

Stationarity in the range k, < k < k ,  implies I ,  = L,+ D E ,  I ,  = L,+D,, hence in 
the limit k, + 00, Ic,  + 0, 

L ,  = L ,  = I , ,  DE = 0, D ,  = k?I,. (25)  

For low rotation rates (low in the sense k, > l),  almost all the potential enstrophy 
injected is dissipated at small scales, and the same is true of kinetic enstrophy: we 
are almost in the classical case of incompressible two-dimensional turbulence. For 
high rotation rates (k, < l ) ,  potential enstrophy dissipation becomes inefficient, most 
of the potential enstrophy injected follows the energy in its reverse cascade towards 
the larger scales. For intermediate rotation rates (k, = l),  half of the potential 
enstrophy cascades to small scales, half of i t  cascades to large scales. I n  all cases, all 
the energy injected goes to the largest scales available. 

The characteristic time of nonlinear transfers a t  scale k-l can be evaluated as usual 
from a root-mean-square measure of velocity shears at scales larger than k- l ,  readily 
expressed in spectral space from the kinetic enstrophy integral : 

I n  the stationary regime, the energy inertial range is characterized by a constant 
inverse energy cascade rate G = L,  = I E ,  which can be estimated as 

6 N kE”(k)/.r”(k). (27) 

The conjunction of (26) and (27) yields a differential equation which can be 
integrated to  determine E”(k) in the range k < k,: 

E”(k) - &‘[k2 -In ( 1  + k2)]-i. (28) 

On the other hand, the potential enstrophy inertial range is characterized by a 
constant direct potential enstrophy cascade rate 7 = D, = k;G, again estimated as 

7 - kX”(k)/T”(k). (29) 

The combination of (19), (26) and (29) yields a differential equation whose 
integration determines E ( k )  in the range k > k, : 

In  the limit k 9 1 ,  i.e. a t  scales not affected by rotation, (28) and (30) yield the well- 
known spectral forms of the two-dimensional classical energy and enstrophy inertial 
ranges : 

E”(k) - 7 k 3 ( l n  k)-i (k (k > < k,) kz)l. 
e s  

(31) 
p( k )  - ak-3 

These laws hold for weak rotation ( k ,  S= 1 )  in the range k > 1 .  
On the other hand, a t  scales larger than the radius of deformation, rotation 
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FIGURE 1.  Predicted spectra of total energy E (- ), kinetic energy K" (- ), potential 
enstrophy s" (----) and kinetic enstrophy 2" (. * . * ) for a quasi-geostrophic flow : (a )  inhibition of 
the reverse energy cascade by a moderate rotation rate when energy and potential enstrophy are 
injected at wavenumber k, larger than the Rossby deformation radius 1 ; ( b )  inhibition of the direct 
enstrophy cascade by a high rotation rate when energy and potential enstrophy are injected at 
wavenumber k, smaller than the Rossby deformation radius 1. 

significantly affects the dynamics of the flow; in the limit k 4 1, we obtain the 
following asymptotic forms valid for fast rotation rates ( k ,  Q 1): 

E ( k )  e3c-i ( k  < k , ) }  

E"(k) N +k-$ (k > k,) 

and not E ( k )  - T,&-+ (Farge & Sadourny 1 9 8 6 ~ ) .  The spectral shape is identical in 
both inertial ranges, as x" and E" reduce to a single invariant quantity for k -+ 1. 
However, we have seen earlier that potential enstropy dissipation in this case 
becomes negligible : 7 = k; e Q e. Practically all the injected potential enstrophy is 
transferred to large scales along with energy. In other words, fast rotation inhibits 
the potential enstrophy cascade by strongly reducing the cascade rate. 

Figure 1 (a, b )  shows the shapes of the various spectra associated with (28), (30), as 
deduced from one another by relations (19), (20), (21). In figure 1 (b ) ,  the increased 
slope of S" in the rotation-sensitive range ( -f instead of - 1) reflects the inhibition 
of the potential enstrophy cascade by fast rotation: less potential enstrophy is 
reaching the small scales. In figure l(a), the collapse of kinetic enstrophy at  scales 
larger than the radius of deformation means that rotation also inhibits the reverse 
energy cascade by increasing the nonlinear transfer time ; a smaller amount of kinetic 
energy reaches the large scales than in the non-rotating case (slope -+ instead of 
-g); and further, the reverse cascade must bring an adequate amount of potential 
energy to feed the steeper (-g) total energy spectrum, which slows the process even 
more. At  slow rotation rates, the inhibition of the reverse cascade occurs only when 
the radius of deformation is reached (figure 1 a).  At fast rotation rates, the classical 
energy inertial range totally vanishes, the reverse energy cascade is inhibited right 
from the injection wavenumber (figure 1 b ) .  
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4. General remarks on wave-vortex interactions 
We now consider the full Saint-Venant equations, and suppose that 4 is small 

enough to ensure that E and S' are close approximations to E and 8. It follows from 
(22) that, just like in the quasi-geostrophic case, direct dissipation of potentio- 
vortical energy is not allowed: otherwise we would get an infinite rate of 
dissipation for potential enstrophy. The situation is, however, more complex than in 
the quasi-geostrophic case. The inertio-gravitational modes are not subject to the 
potential enstrophy conservation constraint : inertio-gravitational energy is there- 
fore allowed to cascade towards small scales, where it can be dissipated. 
Potentio-vortical energy, on the other hand, even though it cannot be dissipated 
directly, may be converted into inertio-gravitational modes, being then subject to 
cascade and (indirect) dissipation. 

Warn (1986) has studied the inviscid statistical equilibria which are solutions of (1) 
in the weak perturbation limit, when E = E ,  s' = S to first order. The equilibrium 
spectra are obtained in terms of the energy and potential enstrophy distributions 
(lo)-( 13) ; they generalize the classical equilibrium solutions of inviscid truncated 
two-dimensional flow, as obtained for instance by Kraichnan (1967), Fox & Orszag 
(1973) or Basdevant & Sadourny (1975). There is of course a strong similarity 
between the two cases, due to the correspondence between quadratic invariants. For 
each wavevector k ,  we have three eigenmodes : one potentio-vortical mode, denoted 
by V, and two inertio-gravitational modes, denoted by Gi and G-. The ratios of 
potential enstrophy to energy, specific to each mode, are the following: 

q ( k )  = 1 + k2, XL+(k) = X k - ( k )  = 0. 

The equilibrium solutions read (Warn 1986) 

b>(k) = (a+PXf(k ) ) - ' ,  

(33) 

(34) 
with X equal to either V, Gf or G-. The formula is formally like in the incompressible 
case, a and P being uniquely determined from a given choice of the linearized 
invariants E and x' (for an exact demonstration, see Sadourny 1985) ; (34) can be 
rewritten using (33) 

Bv(k) = (a+P(l +k2))-l, Bb(k) = 2/a. (35) 

The important consequence of (35) is the systematic dominance of inert& 
gravitational energy at all wavenumbers, at  least when ,8 is positive, which is 
always the case for high enough resolutions. This means that shallow-water 
dynamics might a priori be able to convert, at  least to some extent, potentio-vortical 
energy into inertio-gravitational energy, which supports the possibility, already 
mentioned, of systematic indirect dissipation of rotational energy in the limit of 
infinite Reynolds numbers. 

5. Numerical experiments 
The numerical experiments presented here have been performed using the 

pseudospectral model that we have developed directly on form ( 1 )  of the Saint- 
Venant equations. The initial-value problem is solved on a doubly periodic plane, 
using the Temperton (1983) very fast Fourier transform algorithm, with P = 12S2 
real degrees of freedom in spectral space, An additional circular truncation is 
imposed at wavenumber 64, in order to secure a quasi-isotropy of the smaller scales. 
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The time integration is done with an explicit leapfrog scheme for the conservative 
terms, and an exact integration for the dissipation term when it is added to (1) .  In 
order to follow the dynamics of the fastest inertio-gravity waves with an acceptable 
amount of numerical dispersion errors, we choose a time step equal to 0.75 times the 
maximum value allowed by the Courant-Friedrichs-Lewy (CFL) stability criterion 
applied to the fastest inertio-gravity waves; this time step is indeed much smaller 
than the smallest eddy-turnover time. To initialize the leapfrog scheme, we solve the 
linearized equations ( 5 )  using a normal-mode integration, which is reasonable 
because nonlinear effects have not yet developed during the first time step, much 
smaller than the eddy-turnover time. As soon as the separation between the odd and 
even solutions exceeds lo%, owing to the excitation of the leapfrog numerical mode 
by some nonlinearities, we restart the calculation from one of the two last solutions 
with the same procedure as used for the initial step. This is actually only necessary 
when the rotational eddies strongly dominate the inertio-gravitational waves, i.e. for 
two cases (balanced initial flows) out of six. The computation of one time step 
requires 58 ms on a Cray l-S and a typical integration, done during 100000 time 
steps, is of the order of 1.6 hours. 

When numerically integrating the Saint-Venant equations, we have to face two 
basic difficulties : first, the aliasing problem due to nonlinearity, and secondly, the 
behaviour of the non-quadratic invariants such as energy and potential enstrophy. 
In  the pseudospectral approach used here, an M2-point grid in physical space is 
associated with N2 modes in real spectral space. Nonlinear energy is strictly 
conserved when M = N ,  at the expense of aliasing errors; when M = a&, aliasing is 
suppressed, but nonlinear energy is no longer conserved (Farge & Lacarra 1988). 
Concerning the nonlinear potential enstrophy, it is not conserved for a finite number 
of modes. In  the incompressible case, where invariants are quadratic, Parseval’s 
theorem yields a natural decomposition of the flow into its various spatial scales ; 
further, energy is then strictly conserved in any truncated system under the 
dynamics of triadic interactions. In the present compressible two-dimensional case, 
as we have seen above, there is no unequivocal energy decomposition into spatial 
scales. Accordingly energy conservation is not a natural property of the truncated 
system, even though it  remains an asymptotic property for strictly inviscid flows in 
the limit of infinite resolution. In fact, we have preferred to allow aliasing errors and 
formally conserve energy, for the following reasons : energy conservation (2) is indeed 
an efficient asymptotic constraint on the solution, easy to check in the course of 
computation ; further, the aliasing problems seem to be not so harmful in turbulent 
flow simulations as soon as spectral slopes are steep enough or strongly damped near 
the cut-off scale, the folding of small-scale energy having then a truly negligible effect 
on the large scale ; lastly, the desaliasing procedure is computationally very 
expensive because it requires 1.5N grid points instead of N .  We have checked the 
energy conservation of our scheme by running several inviscid computations ; we 
found that energy is conserved within 0.3% during 100000 time steps. 

The simulation of fully developed turbulence, in decaying or forced conditions, 
raises the problem of modelling the effect of the subgrid-scale structures, insofar as 
the dissipative scales are not explicitly described owing to insufficient resolution. For 
two-dimensional motion like shallow-water flows, molecular dissipation in vV2, v 
being kinematic viscosity, is not necessarily a relevant model of the actual small- 
scale dissipation, which should rather be described as a transition from two- 
dimensional to three-dimensional motion before reaching the scales where dissipation 
actually occurs. The practical problem of subgrid-scale parametrization within an 
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inertial range has already received a great deal of attention in the incompressible 
case, where the use of a highly selective ' hyper-dissipativity ' operator, of the form 

- v( - v2y, (36) 

with large values of a, has proven to be adequate (Basdevant et al. 1981 ; McWilliams 
1984 ; Roy 1986). The higher the exponent, the smaller the ratio of energy dissipation 
to enstrophy dissipation; the use of (36) with large values of a thus guarantees an 
almost vanishing rate of energy dissipation, as predicted by the theory of two- 
dimensional turbulence for the incompressible case. Even more sophisticated 
diffusion operators have been designed, in which energy is strictly conserved 
(Sadourny & Basdevant 1985); but, for the full Saint-Venant equations, we are yet 
lacking a comprehensive theory of nonlinear interactions in order to derive an 
adequate subgrid-scale parametrization in this context. The only a priori desirable 
property is that subgrid-scale modelling should reduce to a highly selective form like 
(36) in the absence of inertio-gravitational motion; we shall therefore choose to use 
(36), with a = 8, applied to all variables (velocity and geopotential). 

The choice of dissipating all dependent variables equally is the simplest one, whose 
validity can only be judged on the grounds of numerical results to be discussed later. 
First, it is not obvious that we have to dissipate the free-surface geopotential in the 
same manner as we dissipate the velocity components. This choice may even appear 
unphysical since geopotential can be interpreted here as a two-dimensional density. 
Subgrid-scale parametrization, however, is very different from molecular diffusion : 
we expect that the mixing by velocity gradients must diffuse all perturbations, 
including those of the free-surface height, and therefore avoid the appearance of 
singularities due to wave breaking. In any case, diffusing all dependent variables in 
the same manner appears a t  least consistent with our desire to dissipate shallow- 
water flows like incompressible flows in the quasi-geostrophic limit, the potential 
vorticity modes being defined as a linear combination of vorticity and geopotential. 

For quasi-geostrophic flows, dominated by rotational motion, we shall define a 
'turbulent ' viscosity coefficient vz appropriate to the rotational dynamics such that 

with rz inversely proportional to the square-root of the kinetic enstrophy 2 :  

But, owing to the presence of inertio-gravity waves and the associated divergent 
motions, we have to adjust u, not only in terms of the kinetic enstrophy 2, i.e. a 
measure of velocity gradients limited to the rotational part of the flow, but also in 
terms of the divergent component of the flow. For instance, if we consider a purely 
divergent flow, we can write the equations for the geopotential and the velocity 
potential in spectral form : 

I;s being a symmetrized sum over all non-ordered couples @ , q ) .  If we exclude the 
linear coupling terms, these equations have a structure similar to the vorticity 
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equation, from which we may infer a characteristic nonlinear timescale 7, whose 
square is inversely proportional to the integral of divergence squared : 

Then we may construct a 'turbulent ' viscosity coefficient appropriate to purely 
divergent dynamics : 

(41) V D  - D max- 

In the general case, where we have a mixture of rotational and divergent motions, 
we shall then define a generalized turbulent viscosity coefficient : 

v = vz + v,. 

- 7-1 k-2" 

(42) 

We perform six numerical experiments realized under conditions similar to those 
of the terrestrial atmospherical flow : 

size of the periodic domain L 6400 km, 
mean free-surface height H 10 km, 
i.e. mean geopotential (@) = (gH$ lo5 m2 s2 ,  

mean velocity 0 m s-l, 
velocity fluctuations IVl 5-20 m s-l. 

The initial fields are chosen as Gaussian random realizations for each Fourier 
component, the variance of each wavevector being a given function of the 
wavenumber, with a maximum of excitation at k, = 3. These six experiments differ 
by the choice of both initial conditions and rotation rates. We consider three different 
initial flows, characterized by various levels of inertio-gravitational energy. The first 
is a flow (referred to as B), for which divergence and time derivative of divergence 
are initially set equal to zero, by solving 

geopotential fluctuations q5 1-5 % of (@), 

V"q5+~~)=N47x[(l+N.(Vx v)) v]; (43) 
this flow is in nonlinear balance and therefore the initial motion is nearly 
incompressible, i.e. strongly dominated by geostrophic vortices with only a negligible 
amount of inertio-gravity waves. This limit case is used to check and compare our 
model to the well-known behaviour of decaying two-dimensional incompressible 
turbulent flows (McWilliams 1984). The second initial flow (referred to as R) is 
mostly rotational and presents a mixture of ,geostrophic vortices and inertio-gravity 
waves. The third flow (referred to as I) is purely irrotational and strongly dominated 
by inertio-gravity waves with only a small amount of potenti-vortical energy 
contained in the geopotential field. We compute each of these initial flows with 
two different rotation rates: either a moderate rotation (referred to as M) with 
f = s-l, the correspond- 
ing Rossby deformation? being respectively k, = 2 and k, = 12. With this set of 
parameters, the Rossby number ( ( N .  (V x V))/f) is in the range 0.01 to 0.1, while the 
Mach number ((I VI) / (gH) i )  is in the range 0.03 to 0.1. Each experiment is integrated 
over 100000 time steps, which, with our adimensional time unit (normalized byf-l), 
corresponds to t,,, = 377 for moderate rotation and t,,, = 2262 for high rotation. 

For each of these six numerical experiments, we display the time evolution of total 

t The values given here are not normalized ; the normalized value of k, is always one, according 

s-l, or a high rotation (referred to as H) withf = 6 

to our definitions. 
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potential enstrophy and total energy, split into its potentio-vortical and inertio- 
gravitational parts, the timescale being measured in terms of adimensional time 
units (figure 2) .  We also analyse the uni-dimensional energy spectra of both 
potentio-vortical and inertio-gravitational energies, comparing their initial and final 
modal distributions (figure 3). Then, to complement to this spectral approach, we 
study the spatial structure of different fields in physical space, namely vorticity, 
divergence, stream function, geopotential and potential vorticity (figure 6). Each 
field is visualized with an appropriate normalized eolour scale that we have designed 
in order to facilitate a morphological analysis of two-dimensional scalar flows 
and allow comparisons between different experiments (Farge 1987) : warm colours 
correspond to positive values, cold colours to negative values while the central isoline 
indicates the level zero ; we have superimposed a luminance scale organized in such 
a way that we can extract maximal information from both large and small scales. As 
a result enough information is kept on the black and white plates to  distinguish 
positive structures, characterized by a clearer centre, from negative structures, 
characterized by a darker centre, delimited by a clear isoline in between for the 
separatrix zero. This approach in terms of physical space variables provides new 
insights to better understand the underlying dynamics, especially the formation of 
coherent vortices, the inertio-gravity wave behaviour and the related geostrophic 
adjustment process. 

6.  Results and discussion 
6.1. Dissipation properties 

We first note that, in all our simulations, perturbations remain small enough to yield 
E z E’ = Ev+h’; at  all times, with a relative error IE-E’IIE less than lo-’. This, a 
posteriori, justifies our analyis in terms of potentio-vortical and inertio -gravitational 
energies, corresponding to the normal eigenmodes of the linearized Saint-Venant 
equations ( 5 ) .  The evolution of s’, E ,  Ed and EG is shown in figure 2. When the 
velocity and mass fields are initially in balance equilibrium, energy is in practice 
exactly conserved (it decreases by less than 1 % throughout the integrations), while 
potential enstrophy is strongly dissipated and decreases by an order of magnitude 
(figure 2a;  b ) .  This is of course consistent with the well-known behaviour of quasi- 
geostrophic, or incompressible, two-dimensional turbulent flows ; a further look at the 
energy partition into potentio-vortical and inertio-gravitational components 
confirms that the flow remains in balance equilibrium at all times. More generally, we 
do not observe, in any of our six experiments, significant energy exchanges between 
the inertio-gravitational and the potentio-vortical parts of the motion : potentio- 
vortical energy is always conserved throughout the integration, irrespective of the 
rotation rate and of the inertio--gravitational energy level, just like in quasi- 
geostrophic flow. It seems that, in the case of small geopotential fluctuations studied 
here, the dynamics of inertio-gravitational modes and potentio-vortical modes are 
to a large extent decorrelated. This behaviour contradicts the prediction, made on 
the grounds of statistical equilibria, that  potentio-vortical energy, if i t  is large 
enough, should tend in the long term to feed the inertio-gravitational part of the 
flow ; the two conclusions, however, could be reconciled if the relaxation timescales 
towards statistical equilibria are large compared with the dissipation timesoales of 
the present experiments. 

The dissipation of potential enstrophy appears sensitive to the rotation rate (figure 
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B R T 
M 8.82 1 1 . 3  93 734 
H 8.31 72.3 312327 

TABLE 1. Ratio 7S(to) /7Z(t0)  for the six different experiments 

2). We may define the potential enstrophy dissipation rate, averaged betwcen times 
to and t ,  close to to, as 

For t ,  close enough to to ,  this observed dissipation rate can be compared to the 
phenomenological estimate 7z(t0) = [Z(t,)]-$ of incompressible two-dimensional 
turbulence. Table 1 shows the ratio 7s/7z at  the initial time to of the different 
simulations. In  the balance case (B) we expect a bchaviour close to two-dimensional 
incompressible flow, and therefore insensitive to rotation. Table 1 confirms that, near 
the initial time, 7z(t,) is a good estimate of 7s(t,) up to a multiplicative constant 
which is indeed independent of rotation. However, a t  large times, we observe a 
marked inhibition of the enstrophy dissipation in the fast-rotation case, which is 
consistent with our prediction of $3. The same type of inhibition is also visible on 
figure 2 for the rotational case (R), but figure 2 and table 1 together show that the 
initial decay rate of potential enstrophy becomes weaker as the initial level of 
inertio-gravitational energy increases : the presence of inertio--gravity waves actually 
makes the enstrophy cascade process less efficient. As we have seen before, there is 
no energy exchange taking place between inertio-gravitational and potentio-vortical 
modes; the mechanism involved in the inhibition of potential enstrophy by 
inertio-gravity waves must be of another kind. The quantity that cascades is 
potential enstrophy, which is globally conserved by the nonlinear processes. 
However, the efficiency of the cascade is measured by the kinetic enstrophy, as it is 
the kinetic part of the flow that actually exerts the straining of potential vortices (cf. 
$3). By definition the potential vorticity field is free from inertio-gravity waves, 
consequently it is the kinetic vorticity field that loses its coherency when 
inertio-gravity waves are present (this effect is particularly conspicuous by 
comparing the vorticity and potential vorticity fields on figure Cie), and the resulting 
loss of coherency of the straining mechanism causes an inhibition of the cascade 
process. 

Figure 2 also shows a total inhibition of inertio-gravitational energy under the 
effect of rotation. In the absence of rotation, the inertio-gravity waves are not 
dispersive, and any mode can have resonant interaction with any other leading to an 
energy dissipation in the small scales (c, e). But under the effect of rotation, namely 
for scales k < 1, the inertio-gravity waves become dispersive and then triadic 
interactions are no longer feasible. We therefore observe no inertio-gravitational 
energy dissipation ( d , f ) .  This inhibition process will be discussed in $6.4. 

6.2. Potentiovortical energy spectra 

Energy spectra are displayed in figure 3. In  all cases the potentio-vortical energy 
spectrum approximately follows a law in k-4. This is not surprising for flows initially 
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in balance equilibrium, whcrc the motion remains approximately balanced (i.e. 
quasi-incompressible) for all times : such laws have often been observed in numerical 
simulations of decaying or forced two-dimensional turbulence a t  similar resolutions 
(Basdevant et al. 1981; Bennett & Haidvogel 1983; McWilliams 1984). The 
additional information in figure 3 is that the spectral law, in kP4, is not destroyed by 
the presence of inertio-gravitational modes, even strongly excited. Similarly, in the 
statistical equilibrium case, we have observed that the equipartition of potential 
enstrophy a t  small scales is not perturbed by the equipartition of inertio- 
gravitational energy, even though inertio-gravitational excitation strongly domi- 
nates. Sadourny (lt)75), studying inviscid shallow-water motion in low-resolution 
numerical models, also found such independent equipartitions in the smaller scales, 
although his simulations were not long enough to  reach statistical equilibria ; in his 
case too, the inertio-gravitational modes were far more energetic than the 
potentio-vortical modes at small scales. 

6.3. Isolated coherent vortices 
An interesting point about the behaviour of the rotational part of the flow is the 
presence or absence of isolated coherent vortices in the vorticity field, emerging out 
of a background of elongated vorticity filaments. Concerning incompressible two- 
dimensional turbulence, such condensation of the vorticity field into isolated 
coherent vortices is found very systematically in long-term numerical simulations at 
comparable resolutions, in both decaying and forced conditions (Pornberg 1977 ; 
Basdevant et al. 1981 ; McWilliams 1984; Babiano et al. 1987). They are relatively 
stable structures, which dominate the turbulent medium in bctwecn by at least an 
order of magnitude ; they emerge from the flow by some phase-locking process and 
survive for very long lifetimes compared with the timescale of nonlinear transfers in 
the fluid, namely the averaged eddy-turnover time. 

Figures 4 ( a ,  b )  (plate 1 )  shows that the vortex cores are the least regular (in the 
sense of Holder regularity, i.e. are described by functions having high-order 
derivatives which do not vanish) features in the vorticity field. The background flow 
in between vortices is not only less excited, but also more regular. This tends 
to contradict the classical interpretation of two-dimensional turbulent flows 
(McWilliams 1984) : the smallest scales of the vorticity field are not the filamentary 
structures, which gct formed a t  the vortex periphery under the action of the 
enstrophy cascade, but are concentrated inside the vortex cores. This has been 
confirmed (Farge & Rabreau 1988) by performing a wavelet analysis, i.e. a space- 
scale decomposition, of a vortex section within a vorticity field from experiment BM 
(figure 5 ) .  Dissipation, which is proportional to the Laplacian of vorticity, and is 
therefore sensitive to the small scales, would thus act not only on vorticity filaments 
but also on the internal structure of vortices, where this Laplacian is the strongest 
(figure 4 c ,  plate 1) .  The presence of very small scales in the vortex cores cannot be 
explained by local vortex stretching, because the vorticity fields shown on figure 4 
and annlysed on figure 5 correspond to initially balanced flows, remaining in balance 
equilibrium during their evolution, which therefore behave as incompressible two- 
dimensional flows. This excitation of the internal structure of vortices may impair 
the contour-dynamics approach (Zabusky 1984 ; Dritschel 1986) to explaining the 
behaviour of turbulent flows, because this technique freezes, or a t  least limits (in the 
case of multicontours), the number of degrees of freedom internal to the vortices. 

In  the sha,llow-water case, isolated coherent vortices seem to develop only when 
the level of excitation of inertio-gravitational waves is low, i.e. in three cases out of 
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FIQURE 5. Wavelet transform of a one-dimensional cut in the vorticity field for a flow in balance 
equilibrium with moderate rotation, experiment BM at t,,, = 377 : (a)  modulus of the complex 
wavelet coefficients; it  gives the space-scale decomposition of the enstrophy and we observe that 
the smallest scales are confined in the vortex core ; (6) phase of the complex wavelet coefficients ; 
the lines of constant-phase point towards the most irregular part of the .+pal and we Bee that i t  
corresponds to  the vortex core. 



450 M .  Farge and R.  Sadourny 

six (figure 6 a  (plate 2 ) ,  and figure 6b, c). This suggests that  both the direct potential 
enstrophy cascade, characterized by the filamentation of the vorticity field, and the 
inverse rotational energy cascade, characterized by the formation of large-scale 
coherent structures through the merging of same-sign vortices, are reduced under the 
action of inertio-gravity waves. We also observe that a stronger contrast between the 
isolated vortices and the turbulent background is obtained when the rotation rate is 
moderate (figure 6a ,  c), which shows a similar inhibition of the nonlinear cascades 
due to rotation: even in the balance case, where inertio-gravitational waves are 
negligible, the contrast weakens when rotation increases (figure 6a ,  b ) ,  an effect 
consistent with the inhibition already mentioned in $6.1. The other extreme is the 
case of a flow dominated by inertio-gravitational waves at moderate rotation rates. 
There, we observe a random wave-like structure of the vorticity field, more 
characteristic of short-scale inertio-gravitational waves than of ordinary turbulence 
(figure 6e) .  The intermediate cases are those of flows presenting comparable amounts 
of potential vortices and inertio-gravitational waves, but subject to fast rotation 
(figure 6 4  f )  : there, the vorticity field is organized into elongated, one-dimensional 
sheets of alternating sign, wrapped around one another ; but again isolated coherent 
vortices are missing. 

Indeed, we find that the same k-4 spectrum (figure 3) covers a wide variety of 
structures for the vorticity field in physical space (Farge & Sadourny 19863). At 
moderate rotation rate, the dominance of inertio-gravitational energy induces a 
random wave-like structure a t  small scales (figure 6 e ) ;  but a t  high rotation rates, we 
observe a distribution of vorticity sheets consistent with Saffman’s (1971) hypothesis 
(figure 6 f ). When the inertio-gravitational wave level is weak, the kP4 spectrum is 
associated with a distribution of coherent vortices (figure 3a,  b ,  c). The persistence of 
the same spectral law, whatever the structure of the vorticity field, appears indeed 
remarkable and tends to  prove the incompleteness of the Fourier spectral analysis in 
handling such problems, where the coherence of the flow may be an essential 
dynamical feature. This is why we also consider the wavelet spectral analysis, which 
gives a local scale decomposition or, in other words, a local spectrum (figure 5). 

The true potential vorticity q, (3), generalizes the linearized potential vorticity q’, 
(9), and thus, contrary to  vorticity, can be considered free of an inertio-gravitational 
component. Therefore, in the analysis of shallow-water flows, potential vorticity 
gives us direct information on the potentio-vortical part of the flow and the related 
potential enstrophy cascade. For instance, an  intense potential enstrophy cascade is 
recognized by a low level of excitation between isolated potential vortices (figure 6a,  
b ,  c). The weak flow there has been intensitively laminated into highly elongated 
filaments giving a handle to an active dissipation in the smaller scales. On the 
contrary, a weak or non-existent potential enstrophy cascade does not produce such 
a lamination ; consequently potential vorticity remains highly excited everywhere, 
without condensing into isolated vortices (figure 6c,  e ,  f ). 

6.4. Inertio-gruvitutional energy spectra 

In  contrast to the potentio-vortical energy spectra, inertio-gravitational energy 
spectra appear extremely sensitive to the experimental conditions, especially the 
rotation rate. The effect of rotation is described in terms of scales relative to the 
radius of deformation, which in our normalization is taken as unit length. 

At scales larger than the Rossby deformation radius (for k < l ) ,  the transfers 
involving the inertio-gravitational modes appear more strongly inhibited than 
their potentiwvortical counterparts. Consequently, the inertio-gravitational energy 
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FIGURE 4. Flow structure of (a) the vorticity field for a flow in balance equilibrium with high rotation, 
experiment BH at rmax = 2262; (b) the vorticity field for a rotational flow with moderate rotation, 
experiment RM at rmx = 3’77 (c) the Laplacian of vorticity for a rotational flow with moderate rotation, 
experiment RM at tmax = 377. 
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FIGURE 6(4. For caption see page 455. 
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FIGURE 6 ( b ) .  For caption see page 455. 
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FIGURE 6(c) .  For caption see page 455. 
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FIGURE 6 ( d ) .  For caption see page 455. 
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FIGURE 6 ( e ) .  For caption see facing page. 
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FIGURE 6. Spatial structure of five different fields (vorticity, potential vorticity, divergence, 
stream function and geopotential), describing the state of six different flows: (a) flow initially in 
balance equilibrium with moderate rotation, experiment BM at t,,, = 377; ( h )  flow initially in 
balance equilibrium with high rotation, experiment BH at t,,, = 2262 ; (c) flow initially mostly 
rotational with moderate rotation, experiment RM at t,,, = 377 ; ( d )  flow initially mostly 
rotational with high rotation, experiment RH at t,, = 2262 ; ( e )  flow initially purely irrotational 
with moderate rotation, experiment IM at t,, = 377; (f) flow initially purely irrotational with 
high rotation, experiment IH a t  t,,, = 2262. 
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spectra remain almost frozen, while the potentio-vortical spectra evolve slowly 
towards a slope close to kP4 (figure 3 b , d , f ) .  Little energy reaches the dissipation 
scales, which is consistent with the quasi-conservation of total energy already 
observed and discussed in 56.1 for high rotation rates. This inhibition of the 
nonlinear transfer among the inertio-gravitational modes is relatively straight- 
forward on phenomenological grounds. An increase of the rotation rate increases 
the frequencies of inertio-gravity waves, which eventually get higher than the 
nonlinear frequencies in the spectral domain of the model. The group velocity 
increases, as well as frequency, and inhibition takes place because wave packets are 
able to disperse before any nonlinear interaction occurs. This type of behaviour has 
already been found in Rossby wave turbulence (Rhines 1975) and rotating three- 
dimensional turbulence (Roy 1986) ; in both cases the linear frequency wL is a non- 
decreasing function of wavenumber, while the nonlinear frequency wNL increases 
with it : hence the inhibition domain, characterized by wNL < oL, is restricted to the 
large scales. A similar argument applies here. The linear frequencies wG ( (1  + k 2 ) i  in 
our non-dimensional notation) are an increasing function of wavenumber. On the 
other hand, in the absence of rotation (i.e. for k > l),  the ko spectrum we observe for 
the inertio-gravitational energy indicates nonlinear frequencies wNL increasing with 
wavenumber as kg, therefore faster than wG. This implies that the inhibiting effect of 
rotation will be felt first in the larger scales. 

At scales smaller than the Rossby deformation radius (k > l),  the distribution of 
inertio-gravitational energy is no longer frozen by rotation : its spectrum evolves 
towards a rather flat shape close to kn (figure 3c ,  e ) ;  this tendency is weaker but still 
noticeable in the initially balanced case (figure 3a) .  A similar behaviour has been 
observed by Herring et al. (1987), MBtais & Herring (1989), for the internal wave 
spectrum in certain types of stratified flows. If we remember that the initial 
inertio-gravitational energy is always strongly peaked in the large scales (k, = 3), a 
trend towards a flat spectrum indicates intense inertio-gravitational energy transfer 
towards smaller scales. This transfer is consistent with the energy dissipation already 
mentioned in 96.1 for turbulence affected by inertio-gravitational modes and slowly 
rotating (figure 2c, e).  

This tendency towards a ko spectrum disagrees with the k-& 3 s p ectral law that we 
have predicted for inertio-gravity waves on phenomenological grounds (Farge 1988) 
and with the k-y spectral law proposed by Zakharov & Sagdeev (1970) for non- 
dispersive two-dimensional acoustic; turbulence, whose physics is similar to the non- 
rotating shallow-water dynamics. It cannot be explained by a lack of dissipation for 
the inertio-gravitational energy, because if we add an Asselin filter (Asselin 1972) to 
selectively damp the inertio-gravity waves, the same ko tendency remains for the 
scales intermediate between the injection k, and the dissipation k, wavenumbers 
(figure 7) .  It is important to notice that the potentio-vortical energy spectrum stays 
unchanged whatever damping is used for the inertio-gravitational energy, which 
confirms the lack of transfer between the potentio-vortical and the inertio- 
gravitational modes already mentioned in § 6.1. 

The observed kn spectrum, steeper than an equipartition spectrum, which would 
be k+', is related to the shape of the shocks which would develop in absence of 
dissipation. Indeed, the shallow-water model, contrary to the Korteweg-de Vries 
model, is not dispersive and therefore produces shocks due to wave breaking. This 
wave breaking, which would be possible in the absence of dissipation, is easy to 
understand if we consider the simple case of a wave propagating with amplitude h 
in a shallow fluid layer of mean depth H .  The ridge and the trough of the wave travel 
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respectively with velocities ( g ( H  + h')): and ( g ( H -  h'));; therefore the ridge moves 
faster than the trough and the wave must eventually break. I n  fact such behaviour 
is not realixtic, because in an actual fluid the shocks will get dispersed (as for the 
Korteweg de Vries model) through the emission of capillary ripples, which then will 
limit the process of wave breaking. But in the shallow-water model the dissipation 
may play the same role as dispersion in damping the strong geopotential gradients 
before shocks get formed and eventually break. It is important to  notice that we are 
still in the domain of validity of the shallow-water hypothesis, because the smallest 
spatial scales considered here remain ten times larger than the water depth, and the 
vertical velocities are negligible, although their gradients may be strong. 

6.5. Inertiu-gravity waves 
In  studying and comparing the morphology of some of the fields viewed in physical 
space, we can visualize the structure of inertio-gravity waves. The difference 
between the geopotential and the stream-function fields corresponds to  the potential 
part of the inertio-gravity waves. Likewise, the difference between the vorticity and 
the potential vorticity fields gives us information on the structure of the kinetic part 
of inertial waves, because they are actually rotational but have no potential 
vorticity. The divergence field readily shows us the structure of the kinetic part of 
gravity waves. We observe that, for all tho cases where inertio-gravity waves are 
initially dominant (figure 6 d ,  e ,  f ) ,  they eventually become strongly excited at small 
scales when rotation is small (figure 6 e ) ;  this is consistent with the development of 
the direct inertio-gravitational energy cascade already noted in 56.1. On the other 
hand, inertio-gravity waves remain trapped in the larger scales when rotation is high 
(figure 6 d ,  f ) ,  owing to the inhibition of their nonlinear cascade by rotation, also 
discussed in $36.1 and 6.4. 

6.6. Geostrophic adjustment 

The geostrophic adjustment mechanism is indeed the capacity of shallow-water 
dynamics to transfer to  smaller scales, and eventually dissipate, its inertio- 
gravitational energy (Sadourny 1975). We conclude from our experiments that an 
increase of the rotation rate inhibits this geostrophic adjustment process ; in all cases, 
the proportion of inertio-gravitational energy to  potentiwvortical energy in the 
larger scales increases with rotation (Farge & Sadourny 1986b). This seems, a t  first 
sight, a paradox, hwause one intuitively thinks that an increase of the external 
rotation should enhance the rotational part of the flow and therefore facilitate the 
adjustment process. This is indeed not the case because rotation inhibits all nonlinear 
transfers and therefore confines the inertio-gravity waves to the scales larger than 
the Rossby deformation radius (see $6.4). 

A very straightforward parallel can be drawn with the effect of rotation on three- 
dimensional turbulence, as demonstrated in the laboratory by Wigeland & Nagib 
(1978), later simulated on a computer by Bardina, Ferziger & Rogallo (1985) and 
then by Roy (1986) : three-dimensional turbulence does not become two-dimensional 
when rotation is applied, because the inhibition of transfers due to  the waves keeps 
the three-dimensional spectral distribution of energy in its initial configuration. A 
similar process is occurring here : if inertio-gravitational energy is initially present in 
the larger scales, the inhibition of transfers due to rotation will confine it there. 

Note that geostrophic balance in the small scales is never obtained in our 
experiments, except when we start from balanced initial conditions. This is readily 
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seen on the energy spectra of figure 3 (c-f ), and can also be recognized if we compare 
the geopotential and stream-function charts on figure 6 (c-f ). 

6.7. The reverse energy cascade 
The reverse energy cascade which may affect the potentio-vortical energy is the last 
aspect to be considered here. It can be looked upon in terms of energy spectra, but 
the discussion is perhaps easier if we study the stream-function charts in physical 
space (figure 6) : the eficiency of the reverse potentio-vortical energy cascade process 
is measured by an increase of the dominant scale in the stream-function field during 
the flow evolution. 

The strongest reverse potentio-vortical energy cascade occurs a t  low rotation rates 
and low inertio-gravitational energy levels (figure 2 a ,  c ) ,  which corresponds to the 
cases where the process generating coherent vortices is most efficient (see 56.3). This 
perhaps sustains an argument given by Babiano et al. (1987), which links coherent 
vortex formation to local reverse energy cascade. 

In all other cases, the reverse potentio-vortical energy cascade appears weakened, 
either by fast rotation, or by an excess of inertio-gravitational energy a t  large scales 
(figure 2 d-f ), which then departs from classical two-dimensional dynamics. For 
quasi-geostrophic flows (see §3), i.e. in the absence of inertio-gravity waves, we recall 
equation (19), approximately S”(k) = (1 + k2) E“(k), which relates potential enstrophy 
s” to quasi-geostrophic energy E .  In the limit of slow rotation (k b i), (19) reduces 
to S N ( k : )  = k 2 E ( k ) ,  which leads to a reverse energy cascade, by imposing that only 
potential enstrophy cascades towards small scales. On the contrary, for quasi- 
geostrophic flows subject to fast rotation (k: % l) ,  (19) yields X”(k) = E”(k); in that 
case, potential enstrophy disappears as a separate invariant and the reverse energy 
cascade is inhibited (Holloway 1983), the flow dynamics being then governed by a 
single invariant as for three-dimensional flow, 

7. Conclusion 
The purpose of this work was to investigate how two-dimensional turbulence is 

modified when the incompressibility constraint is removed. Therefore we have 
studied the interaction between inertio-gravitational and potentio-vortical modes 
within the framework of the Saint-Venant (shallow-water) equations. The first 
conclusion concerns the presence of isolated coherent vortices emerging out of the 
flow. They are formed when the level of inertio-gravity waves remains weak, and 
when rotation is small enough not to inhibit the direct potential enstrophy cascade, 
which then isolates vortices from each other by a background flow dominated by 
vorticity filaments passively advected by the mean flow. We have found that the 
smallest scales are concentrated inside the vortex cores and not on their periphery ; 
this observation seems general to all two-dimensional flows. 

In the range of parameters we have explored, we have not found interactions in the 
sense of energy exchanges between the two types of modes. At small scales, the two 
components of the motion appear to a large extent decorrelated: the potentio- 
vortical component behaves as if the flow were incompressible; on the other 
hand, we observe a cascade of inertio-gravitational energy towards small scales, as 
expected from the theory of statistical equilibria. In  the larger scales, however, the 
presence of inertio-gravitational energy tends to inhibit the reverse cascade of 
potentio-vortical energy. Thus, even though there is no energy exchange between 
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the two components of the motion, one may influence the internal redistribution of 
modal energy within the other. 

An interesting aspect of the dynamics of Saint-Venant equations compared to 
classical two-dimensional turbulence is that the removal of the incompressibility 
constraint makes the flow sensitive to the presence of rotation. We have shown that 
fast rotation tends to inhibit the transfers of potential enstrophy towards small 
scales, as well as the transfers of potentio-vortical energy towards larger scales. 
Further, rotation also reduces the direct inertio-gravitational energy cascade within 
the range of scales larger than the Rossby deformation radius ; this has the important 
consequence that fast rotation inhibits the geostrophic adjustment process in the 
larger scales inasmuch as inertio-gravitational energy remains trapped there. 
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